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It is shown that disagreement between the prediction of classical and conven- 
tional quantum mechanics about momentum probabilities exists in the case of a 
quasiclassical motion. The discussion is based on the detailed consideration of 
two specific potentials: U(x)=x and the oscillatory potential U(x)-~-m~o2x2/2. 
The results of the present Part III represent a further development of the idea in 
Todorov (1980) about the possible inefficiency of conventional theory in the 
case of potentials swiftly varying with time. 

In Todorov (1980) (hereafter referred to as T1) we argued that the 
evolution equation for quantum states of particles is asymmetric in respect 
to time reversal and that it differs essentially f rom the Schrtdinger equa- 
tion (SE) in the presence of potentials swiftly varying with time. This can 
lead to disagreement between theory and experiments in such cases. The 
experimental results discussed in T1 seem to support this statement. 
Besides, the expected time irreversibility of the basic evolution equation 
provides a natural explanation of the entropy increase with time which 
cannot  be achieved with the help of the time-reversible SE for a subsystem 
of a larger sys tem--c f .  Todorov (1980) (hereafter referred to as T2). 

We shall undertake here another  step in the direction outlined in our 
cited work. Our aim is to show with the help of simple mathematics that 
the nonstationary SE can be inefficient in providing some expected results. 
More precisely, we shall show that discrepancies exist between expected 
probabilities and probabilities calculated with the help of  the nonsta- 
t ionary SE exactly in the range of momenta  (and kinetic energies) where 
they are least of all suspected. 
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The above statement and terminology imply that we shall concentrate 
our attention on the case of quasiclassical motion of particles. We know 
the exact meaning of the words "momentum" and "kinetic energy" and the 
way to calculate the corresponding distributions in this case (for unspeci- 
fied initial conditions about the state of motion). We know, besides, in 
what type of experiments one can find the said distributions empirically. 
We also know that in its range of validity (large, though not relativistic 
energies of motion) Newtonian mechanics is true, so that the SE must 
reproduce the classical results for large energies of motion since it is meant 
to be a nourelativistic generalization of the classical equations of motion. 

In what follows we shall examine specific distributions from the 
classical and conventional quantum mechanical point of view. 

Consider the one-dimensional stationary SE. It was pointed out by 
Einstein (1953) that it yields a statistical "snapshot" of the x distribution in 
a large ensemble of particles in the same eigenstate q~n and this distribution 
will coincide with the classical result when n is large enough after an 
averaging of I nl 2 over a suitable region containing many oscillations of 
the wave function (WF) (Einstein had in mind the simple example of a 
particle in an infinitely deep potential well, but the above has a general 
validity for all cases of a quasiclassieal motion--see below). In the 
(quasi)classical case the location of a particle determines precisely its 
kinetic energy and the modulus of its momentum when the total energy of 
motion and the course of the potential energy are known. We shall have 
thus the following equation for a classical ensemble of identical systems 
with random initial conditions of motion in the case of a potential energy, 
symmetrical in respect to point x = 0 and monotonically increasing to the 
right and to the left of this point. 

w( )d =w(p)dp (1) 

where w(x) and w(p) are the corresponding densities of probabilities for 
specific values of the coordinate and the momentum of the particle; the 
differentials dx and dp, certainly, are not independent. In the case when 
U(x)=  oo for x < 0 and U(x) monotonically increases to the right of the 
origin x = 0, starting from a fixed value [e.g., U(x)= 0] we shall have 

p > O  (2) 

[let us recall that the momentum has two possible signs so that in our case 
w(p) = w(-p),  p > 0]. The function w(p) can be determined experimentally 
by a (quasi)instantaneous "switching off" of the potential U(x) and a 
subsequent measurement of the momentum distribution in a sufficiently 
large ensemble of independent identical systems. The results which the 
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nonstationary SE will give for this case should coincide with the classical 
ones due to the validity of the classical picture. We shall check below 
whether this is really so. 

We shall consider in detail two specific examples of potentials which 
belong to the above types: (i) U(x )=  oo for x <  0, U(x)=x for x > 0  (the 
corresponding constant factor before x is chosen to be ---1), and (ii) 
U(x)=mJx2/2 (the usual potential energy for a particle of mass m 
oscillating with a frequency to). Applying the well-known condition p2>> 
h ldp/dx I for validity of the quasiclassical approximation one can easily see 
that in both cases limn__,oo(An/An)= 0, where A n is the interval along the x 
axis in which the said approximation is not valid and A n is the classical 
amplitude of motion along x of a particle of energy E n, E n being the n th 
eigenvalue of the quantum Hamiltonian H. In such a way we demand that 
classical mechanics and the nonstationary SE give identical results for 
w(p) with the exception of the range of small momenta (large x) where the 
classical picture is known to be inadequate from the results of the sta- 
tionary SE. 

It is worth recalling that in the regions where the quasiclassical 
approximation is valid the WF ~k(x) is equal to 

1 x = sin( 1 b 
[p(x)] 'n  [p(x)]  'n  

(3) 

where b is one of the reversal points in classical mechanics [ U ( x ) > E  for 
x>b, U(x)<E for a<x<b] and C is constant. The meaning of the 
averaging procedure ([~k2[) in such regions is transparent now: The 
condition 

shows that the amplitude C2/p(x) of 1~2(x) varies slowly over distances 
~A(x )  so that it is practically constant when one takes the value (lff21) 
over a region containing a suitable number of oscillations of ~k(x) and only 
cos 2 remains under the symbol of averaging. The said slow variation of 
p(x) makes the taking of the average value of cos 2 over the same region 
sensible. The proportionality of I~b2[ t op (x ) -1  is also clear from a classical 
point of view--the probability of finding a particle in a small interval 
about point x is inversely proportional to v(x). Thus classical mechanics is 
applicable exactly in those regions where the above procedure is sensible. 
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In the regions in which one must apply quantum mechanics both p(x)-1 
and f~ p dx behave in an "irregular" fashion which precludes the possibil- 
ity of a reasonable averaging procedure. In such districts one has to return 
to the coordinate distribution given by I q, I 2. Because of the essential 
departure of the quantum equation of motion from the classical one we 
must not expect even coincidence of the overall quantum and classical 
probabilities to find the particle in a region containing several irregular 
oscillations of the WF. 

Let us examine now the above two cases. They are well known from 
the courses of quantum mechanics. Taking the first case we come to the 
following equation for the eigenvalues of H: 

dZ~bn 2m 
dx 2 h2 (x-en)~ ,  , = 0  (4) 

The solution of (4) with the property ~bn(x)--~0 for x--->oo is 

+n(x)'-'S'_Lexp[i(~m-Enp+px)/li]dp, x~O (5, 

where the eigenvalues E n > 0 are determined by the requirement ~bn(0 ) = 0 
[U(x)= o0 for x <  0] and ----- denotes proportionality (with ~ we shall 
denote further the order of magnitude). 

Having in mind the asymptotic properties of the Airy functions [cf., 
e.g., Smirnov 1969, Section 118] we see that ~ ( x )  tends exponentially to 
zero for x>E,, while in the classical region we have -x )  
in exact correspondence with the prediction of classical mechanics about 
Wn(X ) for a particle of energy E, (the averaging is carried out in accord 
with the above; let us recall here that we work with very large n and, 
correspondingly, E n). This result, obtained with the help of the stationary 
SE, is a concrete expression of the fact that the use of this equation is 
reasonable and justified by experiment. 

It is readily seen that classical mechanics gives w,(p)=cons t  when 
p2/2m < En, and wn(p)=0 for p2/2m>E,,. Let us see what is the predict- 
ion of the nonstationary SE in this case. 

The density of probability of finding a value p'  of the momentum is 
given, as is well known, by l an(p')l z, where 

1 f'__~q.,,,(x)e_ir,X/hd x (6) 
an(P')= (2~rh)l/2 

In order to obtain an(p' ) from the integral representation (5) of ~bn(x), 
n--->oo, we have to integrate first over x (from 0 to oo). This becomes 
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possible by using the customary trick of multiplying qJ~(x) by a factor 
e x p [ - a x / h ]  and letting a tend to + 0 after the integration (this is certainly 
admissible in our specific case). It immediately follows from (5) that 

:.~ too f l i p  3 i (p_p,+ia)x]dpdx 
a.(P')~--Jo J_ooexp[ +t-~-~m-E.p)]exp[g 

exp['/  
= - f~- oo p - p '  + ia  = - ~rh exp[ ~ k 6"-mm 

+xp(/[ (p+p,,3 6m 

- - 0 0  P 
dp (7) 

where J: denotes the principal value of the integral and the well-known 
formula 

I lira = -i~r6(p)+ P ~- a-~+o p+ia p 

is used. 
After some elementary manipulations the second term on the right- 

hand side of the last equality (7) is transformed into 

2hexp|"h |-~m -Er'P'| ~ + 2mh h exp h2"mm dp 

Expanding sin(...) in the usual way 

�9 1 p3 pp,2 
sm[~(_~m+.~m_Enp)]_._ sin 6m"h c~ ~ ( " ~ m p 3  pZp,2 _En) 

p , 2 -  E , )  cos 6 p ~  h (8) 

and having in mind that the first term on the right-hand side of (8) 
oscillates very fast when ]E n -p'2/2m[/h>>l in any case and that 

lim sinLp--~rS(p) 
L-~oo p 
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so that 

fo ~ sin Lp __ , , ~r  P j~. p) ap = -~f(O), L-->or (9) 

we obtain in our case En--->oo the final result 

a"(P')~-2~fiexp[~(P'3 6m (lO) 

for all p' satisfying the inequalities p'2/2m < E~, 

1 p,2 _E.I>> 1 

and 

a . ( p ' ) = 0  (11) 

for 

p'2/2m > E,,, I ! / :  >>l 
h~2m 

Having in mind that E n is very large this means that (10) and (11) will 
reproduce the classical results for w,(p') "almost everywhere," the excep- 
tion being the region of kinetic energies (denoted by 8) in which 
(1/h)[p'2/2m-E,,[ is, roughly speaking, of the order of magnitude of 
unity. In this range of kinetic energies la~(p')[ 2 is transformed into zero 
from its practically constant initial value and the classical result is not 
reproduced there. 

But the region in which p'2/2m~E~, p'2/2m <E,,, corresponds to an 
interval (0, A) along the x axis in which the motion of the particle is "most 
classical" ([ p2[ h dp/dx[ has the largest value there). In other words, the 
disagreement between the nonstationary SE and classical mechanics exists 
exactly in the range where we have the greatest reason to require a 
reproduction of the classical results. On the other hand this equation 
unneccessarily precisely reproduces the classical result for w.(p') in the 
region of smallp' (x~En) where the motion of the particle is known not to 
be classical. A possible explanation of this nonphysical fact about the 
momentum distribution can be found in the Appendix. 

The length of the energy interval 8, obviously, remains constant 
irrespective of what large E n we choose and the same applies to the 
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corresponding interval in coordinate space to the right of x = 0  [where 
U(A)-  U(0)=8]. Thus the said disagreement between classical mechanics 
and the nonstationary SE cannot be removed in a coordinate (and energy) 
interval which may be treated as macroscopic in the case of very large E n 
since the number of oscillations of the WF in this fixed interval along the x 
axis tends to infinity together with E,. 

It is interesting to note that in the case U(x)=x, - o o < x < o o  
(unbounded motion with a continuous energy spectrum) the predictions of 
classical mechanics coincide with those of the nonstationary SE. The 
mechanism of this phenomenon in the said case can be found in the fact 
that the region in which no agreement exists has gone to - oo. 

One may argue here that the classical picture is gradually restored, in 
a sense, for E,-->~ since the interval Ap in momentum space in which 
wn(p)v~lan(P)l 2 tends to zero with the increase of E n. This objection, 
however, is easily rejected having in mind the above constancy of 6 and 
(0, A), which are macroscopic. But it is certainly worth examining a 
specific example in which Ap does not tend to zero and in which the 
nonstationary SE leads to the same paradoxical results. 

Consider the case of an oscillatory potential energy U(x)=mJx2 /2 .  
In the classical consideration equation (1) will be valid. The quantum 
results for E, and tpn are well known: 

~,,(x) 1 1 = - -  e -x2/2H,,(x) (12) 
~.1/4 (2nn !)i/2 

E,,=ho~(n+�89 (13) 

(for the sake of convenience we have chosen parameters for which mto/h = 1 
is fulfilled). The classical amplitude of motion A n along x (for a specific 
En) is determined by mto2A]/2=En and we have 

w.(x )=  [ ~rAn(1 - x2/A2.)l/2] - '  (14) 

for the classical coordinate density of probability. Having in mind that the 
classical velocity v,,(x)=A.~o(1-x2/A~) W2 and defining formally a classi- 
cal "wave number" k,,(x) as p,,(x)/h, where p~(x) is the classical momen- 
tum in point x for a total energy E., we obtain immediately 

1,.(x) =A.(1 ' /2  (15) 
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so that, replacingp with k in equation (1) we shall have 

wn(k)= [ -1 (16) 

for k < A n, and 

wn(k) =0 (17) 

for k > A  n. In such a way we have a remarkable symmetry of the classical 
expressions (14) and (16). 

That stationary SE will, certainly, reproduce the classical results for 
w,,(x ) after a corresponding averaging (see above) of I  (x)l n--~oo, with 
the exception of the region where 

pZ/h ] dPdx ~ < 1 

[small p and large x (x.~.An) ]. This can be easily checked near x = 0 where 
the picture most of all resembles the classical one for n = 21, l being a large 
positive integer, keeping in mind that A n = ( 2 n +  1) 1/2, ~n(0)= 
( - 2 ) n / 2 1 . 3 . 5 . . . ( n -  1) and that ffn(x)~b~(0)cos(2n + 1)1/2x for large even 
n and small x (Smirnov, 1969, Section 163). 

An instantaneous exclusion of the force field will give the following 
values of a,,(k ) [la~(k)l 2 yielding the probability density for a value k of 
the wave number] according to the nonstationary SE: 

oo i n 
a,,(k ) = I f'_ ooe_ikxg,,,(X) dx= e-k:12H,,(k) (18) 

(2 r ~rl/4(2,n !)1/2 

(cf., e.g., Vilenkin, 1965), i.e., we have again a complete symmetry of the 
expressions for I n(x)l 2 and lan(k)l 2 as in the classical case. In order to 
obtain the classical result we have to take the average of l a~(k)[ 2 in exactly 
the same way as the one applied in finding ([fin(x)[ 2)  (in the case 
U ( x ) = x  this specific averaging of la(k)l 2 was not necessary; we must 
recall here that in any region where q~(x) [or a(k)]  vary in an irregular 
fashion one should return to the usual densities l a(k)l  2 and [~(x)l 2 since, 
obviously, any averaging would be senseless in this case). In such a way 
the function Pn(k)=(la,,(k)l 2) will be an exact copy of the function 
e~(x)--<l~(x)12> because of equations (12) and (18), the latter funct ion  
reproducing the classical result everywhere with the exception of the 
above-mentioned region of large x ( x~An) ,  where the course of q~n is 
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irregular. But then P,(k) will reproduce in the same way the classical result 
for w,,(k) [equations (16) and (17)] with the exception of the regions of 
exactly the same length (due to the choice mto/h= 1) about k,,m= = 
(2rnE,,)l/2/h =A,,, i.e., we shall have disagreement with classical mechanics 
exactly for such (large) values of k [and most slowly varying U(x) 
correspondingly] for which agreement with the classical picture is obliga- 
tory. This is analogous to the result for U(x)=x with the exception that 
the length of the corresponding region in the k space increases together 
with E n in exactly the same way as the region in x space in which 
p2/h I dp/dx I--~1. As in the first case, we have a nonphysical reproduction 
of w,,(k) for small k (~0) which is obvious from our preceding discussion 
about the value of (l~.(x)l 2) near x---0. 

One may suspect that the presence of wave numbers k >k~max predic- 
ted by the nonstationary SE and the disagreement between classical 
mechanics and this equation for k"'k~m.~ (but smaller than k,~,ax) has 
something to do with the nonclassical character of the motion for x~A,,. It 
is obvious, however, that only the regions (along x) in which q4,(x) has 
approximately the same period of spatial oscillations as exp[-ikx] have a 
noticeable contribution to the value of a,(k) so that the region of large x 
(x~A,,) can be simply cut off when we are interested in large k. The 
presence of nonzero a,(k), k>k,,ma x, is due to the smaller number of 
particles with k~A,,, k<A,,, than the one required by classical mechanics. 
So, the mechanism of the presence of such an(k ) is local and lies in the fact 
that the period of oscillations of exp[-ikx] for k~A,,, k>A,,, is approxi- 
mately equal to the one of ~kn(x) near x = 0. But a much more important 
fact is the quite different general behavior of P,,(k) from the classical one 
expressed by w,,(k) for k~k,,m~ x, k < k,,ma x, in a region substantially larger 
than the one for k>k , ,~  x in which a,,(k) differs noticeably from zero in 
our specific case U(x)--'x 2. Indeed, ~ ( x )  exponentially decreases when 
x >A,,, the same applying, obviously, to an(k) for k>A,,. It is this general 
behavior of P,,(k) exactly which makes it possible to say that the nonsta- 
tionary SE and classical mechanics disagree in macroscopic regions of 
classical motion in this concrete case. 

The above "local resonance" mechanism of nonclassical behavior of 
la,,(k)l 2 in the neighborhood of k,,m~ x is essentially influenced by the way 
in which the amplitude of ~ ( x )  varies with x in the region of most 
classical motion. This will determine the length of the region in p space in 
which discord between classical and quantum distributions exists [compare 
the results for U(x)"-'x and U(x)~x2]. The said mechanism is encoun- 
tered in its simplest form in the case of a potential well of the type 
U(x)=oo for x<0 ,  U(x)=oo for x>a, U(x)=0 inside the interval 
0 < x < a. Let the walls of this well disappear instantaneously in moment 
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t=0 .  We have ~p,,(x)=(2/a)l/2sin(ncrx/a) inside the well and tp,(x)---0 
outside it, n--1,2 . . . . .  so that one immediately obtains in the case, e.g., of 
even n that [a,,(lk[)lZ'~nZ~r2asin2(ka/2)[(nZ~r 2-k2a2) 2 and when n~oo  
one can easily see that [a,(lk[)[ 2 represents a peak with fast-vanishing 
pulsations about it. The half-width ( ~ l / a )  and height (Ha)  remain 
practically constant with n. The center of the peak lies, certainly, in 
k,,m~ =n~r/a (the only possible classical [k[ corresponding to the eigenen- 
ergy E,, =n2rrZhZ/2rnaZ). In this specific case the motion of the particle is 
quasiclassical in the entire region 0 < x < a (prior to the falling of the walls) 
but the above local mechanism makes it impossible to decrease the 
half-width ~l/a irrespective of how large n may be. This constancy of 
Ak~l/a makes the present case intermediate compared to the two cases 
examined above in which Ak tends correspondingly to 0 and to oo with the 
increase of E,. We have here, evidently, simply an illustration of the 
uncertainty relation ApAx~h (Ax=a ,  Ap~h/a). Thus the uncertainty 
relation and the two cases discussed above have a common "resonance" 
mechanism, the said relation being its simplest manifestation. Only the 
consideration of cases more complex than simple potential wells can 
clearly demonstrate the paradoxical character of the resonance phenome- 
non in the classical limit since in such cases we have regions in which 
motion may be called "most classical" and in which disagreement appears 
between the nonstatic SE and classical mechanics while in the well case 
motion is equally classical everywhere (for large n). 

It is well known that classical mechanics is a logically consistent 
theory which is postulated to be correct in its domain of validity discussed 
above. In the above examples we came to a contradiction between classical 
mechanics and the nonstationary SE in the domain where classical 
mechanics is accepted as correct. But we have reasons to assert that the 
application of the said equation is contradictory from the point of view of 
logic (T1). According to the discussion there we need something more than 
simply a WF ~p(x, t) in order to obtain a correct theory in which evolution 
is described with the help of some master equation. Something more than a 
WF is called "hidden variables" in the accepted terminology. Our present 
discussion shows that the simplest HV theory--classical mechanics--  
should be preferred in the description of the results in nonstationary 
situations of the type discussed in detail above. 

The above disagreement between the nonstationary SE and classical 
mechanics is in fact disagreement between the nonstationary and the 
stationary SEs: The fact that the static SE reproduces the classical results 
about the x distribution near x = 0 is at the same time evidence about the 
validity of the classical momentum distribution picture since, as it was 
already said, classical coordinate distribution is obtained with the help of 
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classical momentum distribution. We saw, besides, that the two equations 
give different implications about  the motion of particles in the range of 
small momenta where the classical picture is not valid. 

The fact that the regions in which disagreement between classical 
mechanics and the nonstatic SE exists are comparatively small may proba- 
bly be explained with the existence of two contradictory tendencies: The 
tendency of a correct description of the classical case by quantum mechan- 
ics and the tendency of the SE to be incorrect in the nonstationary case (let 
us recall that we have in mind everywhere the SE with a variable external 
potential [U(x, t) (T1)]). In the case of substantially quantum phenomena 
the disagreement between the nonstatic SE and experiment may be essen- 
tially stronger as implied by some experimental results (T1). 

APPENDIX 

In the above considerations we examined the momentum distribution 
function in states of definite energies and came to a coincidence of the 
classical results and those of the nonstatic SE in the case of small 
momenta, contrary to the implications of the static SE. It would certainly 
be interesting to try to find some explanation of this "nonphysical" result 
about momentum distributions of the nonstatic SE. In the case of poten- 
tials U ( x ) = c o n s t . x  it is possible to obtain a detailed picture of the 
variation of the momentum p of the particles with t when the initial 
momentum P0 at the moment  t i = 0  of inclusion of the potential field is 
known. 

Denote the potential energy as U ( x ) =  - F x ,  - oo < x < oo, where F is 
the constant (along x)  force with which the field acts on our particle. 
Assume that at the moment  ti = 0 of inclusion of this U the quantum state 
is given by WF ~ i ( x ) =  exp[ ipox /h  ]. Tl~s ~g corresponds to an ensemble of 
particles having the same momentum p =P0 at moment t i = 0, the distribu- 
tion along the x axis being homogeneous. We shall seek the solution of the 
SE 

= - -  + U ( x )  q. 
2 m  Ox 2 

(m being the mass of the particles) for t ~ 0 in the form 

,/,(t, x )  = exp[ i p ( t ) x / h ]  g ( t )  (A.1) 

wherep( t )  is the momentum (at moment t) of a classical particle the initial 
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momentum of which is equal to Po, i.e., p ( t ) = p o  +Ft .  T h e  function g( t )  
which satisfies the initial condition g(O)= 1 is obtained trivially and the 
final result is 

~b(t, x ) = e x p [  i p ( t ) x / t i ] e x p [ ( p 2 t + P o F t 2  + F 2 t a / 3 ) / 2 i h m ]  (A.2) 

This function corresponds to a homogeneous distribution of the 
particles along x at any moment  t and to a definite momentumpx = p ( t )  of 
any particle at any t, i.e., the momentum of the particles varies precisely 
according to the Newtonian law/~ = F. This is true for all possible momenta ,  
including small ones. Thus, at least in this specific case, the classical 
conduct of particles having small momenta  is an inherent feature of the 
nonstatic SE in a detailed picture of momentum variation too. As was said 
above, this is not in agreement with the implications of the stationary SE 
which we accept as giving a correct quantum picture of the motion of 
microparticles. 
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